Foreword

This training manual was developed to support the Introduction to GISHydro2000 training workshops given at the University of Maryland. It contains general information about ArcView, GIS-hydrologic modeling techniques, instructions on use of the software, detailed exercises, and supporting reference materials.

GISHydro2000 is an ArcView GIS-based application for conducting hydrologic analyses in the State of Maryland. Sponsored by the Maryland State Highway Administration, GISHydro2000 integrates a complete database of terrain, land use, and soils data with tools for assembling and evaluating hydrologic models such as the USGS regional regression equations and TR-20. The program is designed to support the procedures for hydrologic analysis recommended by the Maryland Hydrology Panel.

This manual will not directly follow the lectures presented in the training workshop. Rather, it serves as a document for future reference when using the software and further exploring its concepts. Several exercises are included to reinforce the lecture material including an Introduction to ArcView lab, USGS peak discharge estimation lab, a gaged homogeneous watershed lab, and two un-gaged heterogeneous labs. The exercises will be performed during the course of the workshop to emphasize the step-by-step techniques used.

The GISHydro software is evolving continually and being enhanced. Reporting and output features are in development to allow for watershed analysis report generation. Customized tools including a time of concentration estimator are also being created. Perhaps the most exciting development will be of a separate version of GISHydro for use over the World Wide Web. We encourage you to visit the GISHydro@Maryland website frequently so that you can always have the most up-to-date version of the software and data.

The Department of Civil and Environmental Engineering has a well established program of research and instruction in the field of GIS applied to hydrologic and hydraulic modeling. In addition to occasional training seminars and workshops, there are currently both undergraduate and graduate courses including: "ENCE465 – GIS for Planning and Design Models", "ENCE688Z – GIS for Watershed Analysis", and "ENCE688R – "River Engineering."

We invite you to explore the training materials, courses, and research publications we have available. The GISHydro software initiative has been and continues to be a cooperation between academia, federal, state, and local government, as well as private consultants. This cooperation continues to produce powerful tools to support engineering, conservation, and planning efforts within the State.

Thank you for registering for the training workshop. For more information, please contact the authors of this document:

Dr. Glenn E. Moglen Assistant Professor (301) 405-1964 moglen@eng.umd.edu Michael J. Casey Research Engineer (301) 405-0319 caseymj@eng.umd.edu

GISHydro@Maryland Website:

www.gishydro.umd.edu

© 2000 University of Maryland, Department of Civil and Environmental Engineering

Foreword	1
Table of Contents	3
GISHydro2000 – "The New GISHYDRO"	8
Data / Files included	8
DEMs – Digital Elevation Models	9
USGS Data	9
MAIA (Mid-Atlantic Integrated Assessment) Data	9
Land Use	. 10
USGS 1970's Land Use	. 10
Ragan, 1985 Land Use	. 10
Ragan, 1990 Land Use	. 10
Maryland Office of Planning, 1990 Land Use	. 10
Maryland Office of Planning, 1994	. 11
Maryland Office of Planning, 1997	. 11
EPA – MRLC (Multi-Resolution Land Cover)	.11
Soils	.11
STATSGO	.11
Ragan	. 12
SSURGO	. 12
Miscellaneous	. 12
National Hydrography Dataset (NHD) (formerly EPA River Reach (RF3))	. 12
Maryland and Adjacent Counties	. 12
Maryland Physiographic Provinces	. 12
Maryland Major Road Network	. 13
USGS Quads Coverage	. 13
Digital Raster Graphics (DRG) Images	. 13
Using GISHydro2000	. 13
The "Maryland View" Window	. 13
The "Select Quadrangles" Dialogue Box	. 13
The "Area of Interest" Window	. 16
Contents	. 16
Performing Watershed Analysis	. 16
Extracting Data	.17
Watershed Analysis	.17
The "Hvdro Menu"	. 18
Setting "Properties"	. 18
Delineating a Watershed	. 20
Basin Composition	. 20
Find Similar Gages	. 21
Basin Statistics	. 22
U.S.G.S. Peak Discharge Estimation	.23
U.S.G.S. Hydrograph Estimation.	.23
ArcView Tutorial	. 25
Documents	. 25

Table of Contents

Views	25
Themes	25
Tables	25
Layouts	26
Scripts	26
The View Window	26
Active vs. Visible Themes	26
Navigating within the Window	27
The "Identify" Tool	28
The "Label" Tool	28
The Table Window	28
The Layout Window	29
The Script Window	29
Introduction to ArcView Lab – Basic ArcView Skills	30
Task	30
Step One – Create a View Window	30
Step Two – Load in Relevant Themes	30
Step Three – Basic Navigation	31
Step Four – Using the Identify Tool	31
Step Five – Compare Image to Grid Data	
Step Five – Labeling a Stream/Road/Gage	32
Step Six – Getting and Using a Table	32
Step Seven – Performing a Que rv	32
Step Eight – Complete the Task	33
Vector and raster data models	34
Files and File Handling in ArcView	36
ArcView Project Files	36
*.apr:	36
* avx:	36
* ave:	
ArcView Data Files (Vector/Feature) Data	36
*.shp. *.shx. *.dbf:	36
ArcView Raster Data ("Grids")	37
* asc:	37
ArcView Image Data	37
* tif. * tff. * tiff. * bil. * bsg. * bip. * bmp. * ipg:	
"worldfiles"	
ArcView Filesystem Components	
"info" directory:	
"log" directory	38
* avl·	38
Frequently Asked Ouestions:	
Projections and Coordinate Systems	
Using Corpscon, the Projector! Extension in ArcView, and Project in ArcInfo	
Performing Projections on the Computer	
Corpscon	
1	

Projector! Extension	45
Project in ArcInfo	46
References:	48
Hydrologic Interpretation of a Digital Elevation Model (DEM)	49
Why are flow directions important?	49
Can you provide a simple example?	49
Can we examine a more complete example?	50
How do I use the GIS to determine flow directions?	52
Why is flow accumulation important?	53
What would the flow accumulation look like for the 5x5 DEM example?	53
How do I use the GIS to determine flow accumulation?	53
Watersheds in GIS	55
Why is the watershed concept important?	55
How do I use the GIS to delineate a watershed?	55
Determining Flow Lengths or Travel Distances in GIS	61
Why are flow lengths important?	61
How do I use the GIS to determine flow lengths?	61
Working With Tables in ArcView	65
To join two tables together:	67
Joining Tables in a Script	67
Accessing Entries in a Table	70
Land Use / Soil Type Lookup	71
Watershed Analysis Lab – U.S.G.S. Regression Equations for Peak Discharge	74
Task	74
Step One – Locate Watershed Outlet and Select Quads	74
Step Two - Delineate the Watershed	75
Step Three – Determine Basin Composition	76
Step Four – Determine Basin Statistics	76
Step Five – Determine Peak Discharges	76
Step Six – Determine 2- year Hydrograph	77
Results	78
Overview of NRCS (SCS) TR-20 – By Dr. R.M. Ragan	79
TR-20 Structure and Operation	85
Conceptual Description	85
Simplified Example	86
Watershed Configuration	87
Cross Sections	87
Rating Table Calculation	89
Input File	90
Output File	92
Watershed Analysis Lab - Homogeneous, Gaged Watershed	94
Task	94
Step One – Locate Outlet and Select Quads	94
Selecting Quads	96
Select Data Types	97
Select Processing Options	97

A word about processing time	97
The Area of Interest View	97
Step Two – Delineate Watershed	98
Load USGS Gage Network	98
Delineate the Watershed	98
Step Three – Calculate Basis Statistics	99
Step Four – Calculate Peak Discharges	100
Step Five – Delineate Main Channel and Subwatersheds	101
Subwatersheds	103
Step Six – Calculate Attributes	103
Step Seven – Generate Schematic	103
Step Eight – Configure TR-20 Control Panel	103
Set Simulation Parameters (Executive Control)	104
Step Nine – Execute TR-20 Model	105
Step Ten – Evaluate and Compare Results	105
Model Predictions and Parameter Sensitivity	106
Accuracy of the Predictive Model	106
Model Sensitivity to Input Parameters	107
Uncertainty in Input Parameters	109
Watershed Analysis Lab – Heterogeneous, Gaged Watershed I (Northwest Branch).	111
Task	111
Step One – Assemble and Process Data	111
Select Data Types and Processing Options	111
Step Two – Delineate the Watershed	112
Step Three – Define Main Channel Streams and Add Outlet Points	112
Delineate Stream Segments	112
Delineate Outlet Points	113
Step Four – Delineate Subwatersheds	115
Step Five – Calculate Attributes and Generate Schematic	115
Generate the Model Schematic	115
Step Seven – Draw Cross Section Transects	116
Add transects	116
Plot Cross Section Profiles	117
Load Rating Tables from File	118
Editing Rating Tables	118
Step Eight – TR-20 Control Panel	119
Step Nine – Execute the TR-20 Program	119
Step Ten – Evaluate and Compare Results	119
Workshop Results	120
Watershed Analysis Lab – Heterogeneous, Un-gaged Watershed II (Cattail Creek)	121
Task	121
Step One – Locate Outlet and Select Quads	121
Select Data Types, Begin Processing	121
Step Two – Delineate the Watershed	121
Step Three – Calculate Basin Statistics and Peak Discharges	122
Step Four – Delineate Main Channel Streams and Add Outlet Points	122

Delineate Stream Segments	
Delineate Outlet Points	
Step Five – Delineate Subwatersheds	
Merge Subwatersheds	
Step Six – Calculate Attributes and Generate Schematic	
Step Seven – Draw Cross Section Transects	
Incorporate Transect Lines	
Step Eight – TR-20 Control Panel and Execute Model	
Step Nine – Ultimate Development Consideration	
Attribute Table Editing Procedure	
Generate New Schematic (Developed Condition)	
Step Ten – Evaluate and Compare Results	
References	
Supplemental Material	